

tricycle: Miscellaneous extensions for Trio, the friendly async I/O library

tricycle is a library of miscellaneous extensions for Trio [https://trio.readthedocs.io/en/latest/].

	API reference
	Synchronization primitives

	Stream helpers

	Cancellation helpers

	Scoped objects

	Tree variables

	Release history
	tricycle 0.4.1 (2024-02-02)

	tricycle 0.4.0 (2024-01-11)

	tricycle 0.3.0 (2023-06-05)

	tricycle 0.2.2 (2023-03-01)

	tricycle 0.2.1 (2020-09-30)

	tricycle 0.2.0 (2019-12-12)

	tricycle 0.1.0 (2019-05-06)

Indices and tables

	Index

	Module Index

	Search Page

	Glossary [https://trio.readthedocs.io/en/stable/glossary.html#glossary]

API reference

Synchronization primitives

	
class tricycle.RWLock(*, read_biased: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	A readers-writer lock [https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock].

Each acquisition of the lock specifies whether it is a “reader” or
a “writer”. At any given time, the lock may be held by one writer
and no readers, by many readers and no writer, or by no one.

This implementation is fair by default: if task A tried to acquire
the lock before task B did, task B won’t get it first. This
implies that new readers can’t acquire a reader-held lock after a
writer has started waiting to acquire it, which helps avoid
starvation of writers by readers. (The Wikipedia article linked
above calls this “write-preferring”.) If you want different behavior,
see the read_biased attribute.

	
read_biased

	Whether new readers should be able to
immediately acquire a readers-held lock even after some
writers have started waiting for it. (The Wikipedia article
linked above calls this “weakly read-preferring”.) Note that
setting read_biased to True [https://docs.python.org/3/library/constants.html#True] can result in
indefinite starvation of writers if the read workload is
busy enough. Changing this attribute to True [https://docs.python.org/3/library/constants.html#True] will
immediately wake up all waiting readers to grant them the
lock if it is currently readers-held with writers waiting.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
await acquire(*, for_write: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	Acquire the lock, blocking if necessary.

	Parameters:

	for_write – If True, acquire the lock in write mode,
which provides exclusive access. If False, acquire the
lock in read mode, which permits other readers to also hold it.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the current task already holds the lock (in either
 read or write mode)

	
await acquire_read() → None [https://docs.python.org/3/library/constants.html#None]

	Equivalent to acquire(for_write=False).

	
await acquire_write() → None [https://docs.python.org/3/library/constants.html#None]

	Equivalent to acquire(for_write=True).

	
acquire_nowait(*, for_write: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	Attempt to acquire the lock, without blocking.

	Parameters:

	for_write – If True, attempt to acquire the lock in write mode,
which provides exclusive access. If False, attempt to acquire the
lock in read mode, which permits other readers to also hold it.

	Raises:

	
	trio.WouldBlock [https://trio.readthedocs.io/en/stable/reference-core.html#trio.WouldBlock] – if the lock cannot be acquired without blocking

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the current task already holds the lock (in either
 read or write mode)

	
acquire_read_nowait() → None [https://docs.python.org/3/library/constants.html#None]

	Equivalent to acquire_nowait(for_write=False).

	
acquire_write_nowait() → None [https://docs.python.org/3/library/constants.html#None]

	Equivalent to acquire_nowait(for_write=True).

	
release() → None [https://docs.python.org/3/library/constants.html#None]

	Release the lock.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the current task does not hold the lock (in either
 read or write mode)

	
async with read_locked() → AsyncIterator [https://docs.python.org/3/library/typing.html#typing.AsyncIterator][None [https://docs.python.org/3/library/constants.html#None]]

	Returns an async context manager whose __aenter__ blocks
to acquire the lock in read mode, and whose __aexit__
synchronously releases it.

	
async with write_locked() → AsyncIterator [https://docs.python.org/3/library/typing.html#typing.AsyncIterator][None [https://docs.python.org/3/library/constants.html#None]]

	Returns an async context manager whose __aenter__ blocks
to acquire the lock in write mode, and whose __aexit__
synchronously releases it.

	
locked() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Check whether the lock is currently held.

	Returns:

	"read" if the lock is held by reader(s), "write"
if the lock is held by a writer, or "" (which tests
as false) if the lock is not held.

	
statistics() → _RWLockStatistics

	Return an object containing debugging information.

Currently the following fields are defined:

	locked: boolean indicating whether the lock is held by anyone

	state: string with one of the values "read" (held by one
or more readers), "write" (held by one writer),
or "unlocked" (held by no one)

	readers: a frozenset of the Task [https://trio.readthedocs.io/en/stable/reference-lowlevel.html#trio.lowlevel.Task]s
currently holding the lock in read mode (may be empty)

	writer: the trio.lowlevel.Task [https://trio.readthedocs.io/en/stable/reference-lowlevel.html#trio.lowlevel.Task] currently holding
the lock in write mode, or None if the lock is not held in write mode

	readers_waiting: the number of tasks blocked waiting to acquire
the lock in read mode

	writers_waiting: the number of tasks blocked waiting to acquire
the lock in write mode

Stream helpers

tricycle comes with two wrappers around Trio receive streams:
BufferedReceiveStream, which helps in parsing binary protocols that
use fixed-length fields, and TextReceiveStream, which helps in
parsing line-oriented textual data.

	
class tricycle.BufferedReceiveStream(transport_stream: ReceiveStream [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.ReceiveStream], chunk_size: int [https://docs.python.org/3/library/functions.html#int] = 4096)

	Bases: AsyncResource [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.AsyncResource]

Wraps a ReceiveStream [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.ReceiveStream] with buffering capabilities,
so you can receive known amounts of data at a time.

	
await aclose() → None [https://docs.python.org/3/library/constants.html#None]

	Discard all buffered data and close the underlying stream.

	
await receive(num_bytes: int [https://docs.python.org/3/library/functions.html#int]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Receive and return num_bytes bytes, or fewer if EOF is
encountered.

	Parameters:

	num_bytes (int [https://docs.python.org/3/library/functions.html#int]) – The number of bytes to return. Must be
greater than zero.

	Returns:

	bytes or bytearray – The data received, exactly num_bytes bytes
unless EOF is encountered. If there is no data left to return
before EOF, returns an empty bytestring (b"").

	Raises:

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – Anything raised by the receive_some() [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.ReceiveStream.receive_some]
 method of the underlying transport stream.

	
await receive_all_or_none(num_bytes: int [https://docs.python.org/3/library/functions.html#int]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | None [https://docs.python.org/3/library/constants.html#None]

	Receive and return exactly num_bytes bytes, or None
if EOF is encountered before receiving any bytes.

	Parameters:

	num_bytes (int [https://docs.python.org/3/library/functions.html#int]) – The number of bytes to return. Must be
greater than zero.

	Returns:

	bytes or None – The data received, exactly num_bytes bytes;
unless EOF is encountered before reading any data, in which
case we return None.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if EOF is encountered after reading at least one byte
 but before reading num_bytes bytes.

	
await receive_exactly(num_bytes: int [https://docs.python.org/3/library/functions.html#int]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Receive and return exactly num_bytes bytes, throwing an
exception if EOF is encountered before then.

	Parameters:

	num_bytes (int [https://docs.python.org/3/library/functions.html#int]) – The number of bytes to return. Must be
greater than zero.

	Returns:

	bytes – The data received, exactly num_bytes bytes.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if EOF is encountered before reading num_bytes bytes.

	
unget(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → None [https://docs.python.org/3/library/constants.html#None]

	Put the bytes in data back into the buffer, so they will be the
next thing received by a call to one of the receive methods.

	
class tricycle.TextReceiveStream(transport_stream: ReceiveStream [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.ReceiveStream], encoding: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, *, errors: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, newline: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = '', chunk_size: int [https://docs.python.org/3/library/functions.html#int] = 8192)

	Bases: AsyncResource [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.AsyncResource]

Wraps a ReceiveStream [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.ReceiveStream] with buffering and decoding
capabilities for receiving line-oriented text.

See io.TextIOWrapper [https://docs.python.org/3/library/io.html#io.TextIOWrapper] for more documentation on the encoding,
errors, and newline arguments.

	Parameters:

	
	transport_stream (ReceiveStream [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.ReceiveStream]) – The stream to receive
data on.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – The encoding with which to decode received data.
If none is specified, we use the value returned by
locale.getpreferredencoding() [https://docs.python.org/3/library/locale.html#locale.getpreferredencoding].

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – Controls how to respond to decoding errors; common
values include "strict" (throw an exception), "ignore"
(drop the bad character), or "replace" (replace the bad
character with a replacement marker). The default of None
is equivalent to "strict".

	newline (str [https://docs.python.org/3/library/stdtypes.html#str]) – Controls how line endings are handled. Use
None to convert any newline format to "\n",
"" to accept any newline format and pass it through unchanged,
or "\r", "\n", or "\r\n" to only accept that
sequence as a newline.

	chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of bytes to request in each call to the
underlying transport stream’s
receive_some() [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.ReceiveStream.receive_some] method.

	
transport_stream

	

	
encoding

	

	
errors

	

	
chunk_size

	The values passed as constructor parameters are also available as
attributes on the resulting TextReceiveStream object.
errors and chunk_size are writable; the others are read-only.
(For example, if a read fails with a UnicodeDecodeError [https://docs.python.org/3/library/exceptions.html#UnicodeDecodeError], it is safe
to set stream.errors = "replace" and retry the read.)

	
await aclose() → None [https://docs.python.org/3/library/constants.html#None]

	Discard all buffered data and close the underlying stream.

	
property newlines: str [https://docs.python.org/3/library/stdtypes.html#str] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], ...] | None [https://docs.python.org/3/library/constants.html#None]

	The newline sequences that have actually been observed in the input.

If no newline sequences have been observed, or if you specified
a particular newline type when constructing this stream,
this attribute is None. Otherwise, it is a single string
or a tuple of strings drawn from the set {"\r", "\n", "\r\n"}.

	
await receive_line(max_chars: int [https://docs.python.org/3/library/functions.html#int] = -1) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Receive and decode data on this stream until max_chars have
been received or a newline or end-of-file is encountered. The
meaning of “newline” depends on the newline argument
passed at construction time.

	Parameters:

	max_chars (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of characters to return if
no newline sequence is received. If negative, read until
newline or EOF.

	Returns:

	str – The line received. It always ends with a newline unless
we reached max_chars or EOF. If there is no data left to
return before EOF, returns an empty string ("").

	Raises:

	
	UnicodeDecodeError [https://docs.python.org/3/library/exceptions.html#UnicodeDecodeError] – if the received data can’t be decoded

	Anything else – that was raised by the underlying transport stream’s
 receive_some() [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.ReceiveStream.receive_some] method.

Cancellation helpers

Gracefully shutting down a complex task tree can sometimes require
tasks to be cancelled in a particular order. As a motivating example,
we’ll consider a simple protocol implementation where the client and
server exchange newline-terminated textual messages, and the client is
supposed to send a message containing the text “goodbye” before it
disconnects:

async def receive_messages(
 source: trio.abc.ReceiveStream, sink: trio.abc.SendChannel[str]
) -> None:
 async for line in TextReceiveStream(source, newline="\r\n"):
 await sink.send(line.rstrip("\r\n"))
 await sink.aclose()

async def send_messages(
 source: trio.abc.ReceiveChannel[str], sink: trio.abc.HalfCloseableStream
) -> None:
 async with source:
 async for msg in source:
 await sink.send_all(msg.encode("utf-8") + b"\r\n")
 await sink.send_eof()

@asynccontextmanager
async def wrap_stream(
 stream: trio.abc.HalfCloseableStream
) -> AsyncIterator[trio.abc.ReceiveChannel[str], trio.abc.SendChannel[str]]:
 async with trio.open_nursery() as nursery:
 incoming_w, incoming_r = trio.open_memory_channel[str](0)
 outgoing_w, outgoing_r = trio.open_memory_channel[str](0)
 nursery.start_soon(receive_messages, stream, incoming_w)
 nursery.start_soon(send_messages, outgoing_r, stream)
 try:
 yield (incoming_r, outgoing_w)
 finally:
 with trio.move_on_after(1) as scope:
 scope.shield = True
 await outgoing_w.send("goodbye")

async def example() -> None:
 with trio.move_on_after(5):
 async with trio.open_tcp_stream("example.com", 1234) as stream, \
 wrap_stream(stream) as (incoming, outgoing):
 async for line in incoming:
 await outgoing.send("you said: " + line)
 if line == "quit":
 break

The intent is that example() will echo back each message it receives,
until either it receives a “quit” message or five seconds have elapsed.
wrap_stream() has carefully set up a shielded cancel scope around
the place where it sends the goodbye message, so that the message can
still be sent if the async with wrap_stream(...) block is
cancelled. (Without this shield, the call to send() would
immediately raise Cancelled [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Cancelled] without sending anything.)

If you run this, though, you’ll find that it doesn’t quite work.
Exiting due to a “quit” will send the goodbye, but exiting on a
cancellation won’t. In fact, the cancellation case will probably
crash with a BrokenResourceError [https://trio.readthedocs.io/en/stable/reference-core.html#trio.BrokenResourceError] when it tries to send
the goodbye. Why is this?

The problem is that the call to send() isn’t sufficient on its own to
cause the message to be transmitted. It only places the message into a
channel; nothing will actually be sent until the send_messages() task
reads from that channel and passes some bytes to send_all().
Before that can happen, send_messages() will itself have been cancelled.

The pattern in this example is a common one: some work running in the body
of a nursery is reliant on services provided by background tasks in that
nursery. A normal Trio nursery doesn’t draw any distinctions between the
body of the async with and the background tasks; if the nursery is
cancelled, everything in it will receive that cancellation immediately.
In this case, though, it seems that all of our troubles would be resolved
if only we could somehow ensure that those background tasks stay running
until the body of the async with has completed.

tricycle’s service nursery does exactly this.

	
async with tricycle.open_service_nursery() → AsyncIterator [https://docs.python.org/3/library/typing.html#typing.AsyncIterator][Nursery [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery]]

	Provides a nursery augmented with a cancellation ordering constraint.

If an entire service nursery becomes cancelled, either due to an
exception raised by some task in the nursery or due to the
cancellation of a scope that surrounds the nursery, the body of
the nursery async with block will receive the cancellation
first, and no other tasks in the nursery will be cancelled until
the body of the async with block has been exited.

This is intended to support the common pattern where the body of
the async with block uses some service that the other
task(s) in the nursery provide. For example, if you have:

async with open_websocket(host, port) as conn:
 await communicate_with_websocket(conn)

where open_websocket() enters a nursery and spawns some tasks
into that nursery to manage the connection, you probably want
conn to remain usable in any finally or __aexit__
blocks in communicate_with_websocket(). With a regular
nursery, this is not guaranteed; with a service nursery, it is.
An example hinting at general usage:

@asynccontextmanager
async def open_websocket(host, port):
 async with open_service_nursery() as nursery:
 try:
 # ... make some child tasks ...
 yield connection
 finally:
 # The yield body is already cancelled, and
 # child tasks are still available here for cleanup...
 pass

Now, anything in the body of the open_websocket() context, including
communicate_with_websocket(), will be given first opportunity to cancel
gracefully. Subsequently, the finally block in the open_websocket()
implementation runs, and tasks spawned within the try body are still
available during cleanup.

Note that child tasks spawned using start() gain their protection from
premature cancellation only at the point of their call to
task_status.started().

If you need to do manipulations of this sort yourself, it can be helpful
to be able to treat multiple cancel scopes as a single unit.

	
class tricycle.MultiCancelScope(*, shield: bool [https://docs.python.org/3/library/functions.html#bool] = False, cancel_called: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Manages a dynamic set of trio.CancelScope [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CancelScope]s that can be
shielded and cancelled as a unit.

New cancel scopes are added to the managed set using
open_child(), which returns the child scope so you can enter
it with a with statement. Calls to cancel() and changes
to shield apply to all existing children and set the
initial state for future children. Each child scope has its own
deadline [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CancelScope.deadline] and shield [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CancelScope.shield]
attributes; changes to these do not modify the parent.

There is no cancelled_caught [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CancelScope.cancelled_caught] attribute
on MultiCancelScope because it would be ambiguous; some
of the child scopes might exit via a trio.Cancelled [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Cancelled]
exception and others not. Look at the child trio.CancelScope [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CancelScope]
if you want to see whether it was cancelled or not.

	
open_child(*, shield: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None) → CancelScope [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CancelScope]

	Return a new child cancel scope.

The child will start out cancelled if the parent
cancel() method has been called. Its initial shield state
is given by the shield argument, or by the parent’s
shield attribute if the shield argument is not specified.

	
cancel() → None [https://docs.python.org/3/library/constants.html#None]

	Cancel all child cancel scopes.

Additional children created after a call to cancel() will
start out in the cancelled state.

	
shield

	The overall shielding state for this MultiCancelScope.

Setting this attribute sets the shield [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CancelScope.shield]
attribute of all children, as well as the default initial shielding
for future children. Individual children may modify their
shield state to be different from the parent value, but further
changes to the parent MultiCancelScope.shield will override
their local choice.

	
cancel_called

	Returns true if cancel() has been called.

Scoped objects

Trio follows the principles of structured concurrency [https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/]:
its general-purpose APIs for spawning background tasks all require that
the lifetime of each task be bounded by an async with block
in its parent (represented by the nursery [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery] object).
Sometimes this can seem rather inconvenient; for example, what if you want
to create a class whose instances spawn tasks that live for the lifetime of
the instance? The traditional approach goes something like this:

class WebsocketConnection:
 def __init__(self, nursery: trio.Nursery, **etc):
 self._nursery = nursery
 # initialize other members from **etc

 async def connect(self):
 await foo() # can't be in __init__ because __init__ is synchronous
 self._nursery.start_soon(self._manage_connection)

@asynccontextmanager
async def open_websocket_connection(**etc) -> AsyncIterator[WebsocketConnection]:
 async with open_service_nursery() as nursery:
 conn = WebsocketConnection(nursery, **etc)
 await conn.connect()
 yield conn
 nursery.cancel_scope.cancel()

async def use_websocket():
 async with open_websocket_connection(**etc) as conn:
 await conn.send("Hi!")

tricycle improves on this by providing the ability to define scoped objects,
which can only be instantiated as part of an async with block.
In addition to the usual synchronous __init__ method, their class can
define async methods called __open__ and/or __close__ which run at the
start and end (respectively) of the async with block. For greater expressive
power, it is also possible to define a __wrap__ method which returns the
entire async context manager to use.

	
class tricycle.ScopedObject(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwds: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	An object whose lifetime must be bound to an async with block.

Suppose that Foo is a ScopedObject subclass. Then if
you say Foo(*args), you won’t actually get a Foo object;
instead, you’ll get an async context manager that evaluates to a
Foo object. So you would need to say:

async with Foo(*args) as my_foo:
 # do stuff with my_foo

This allows Foo to have reliable control of its lifetime, so
it can spawn background tasks, deterministically execute cleanup
code, and so on.

If you want to implement such an object, inherit from ScopedObject
and indicate what should happen on entry and exit of the context.
This should be done in one of the following two ways:

	Define async __open__ and/or __close__ methods, which will
be called from the context __aenter__ and __aexit__ respectively,
taking no arguments and returning None.
__close__ will be called no matter whether the context exits
normally or due to an exception. (It can tell whether there is an
active exception by using sys.exc_info() [https://docs.python.org/3/library/sys.html#sys.exc_info], but cannot suppress
it.) If you use this approach, ScopedObject takes care of
invoking any initialization and finalization logic
supplied by your base classes.

	Define a __wrap__ method that returns an async context
manager. This gives you more flexibility than implementing
__open__ and __close__, because you can run some code
outside of your base classes’ scope and can swallow exceptions,
but means you have to enter the base classes’ scope yourself.

It is an error to define both __wrap__ and (__open__ or
__close__). If you don’t define __wrap__,
ScopedObject generates it for you in terms of
__open__ and __close__, with semantics equivalent to the
following:

@asynccontextmanager
async def __wrap__(self):
 async with super().__wrap__():
 if hasattr(self, "__open__"):
 await self.__open__()
 try:
 yield
 finally:
 if hasattr(self, "__close__"):
 await self.__close__()

A subclass is provided to handle the common case where a nursery should be
created and remain open for the lifetime of the object:

	
class tricycle.BackgroundObject(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwds: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Bases: ScopedObject

A ScopedObject that automatically creates a
service nursery for running background tasks.

If you pass daemon=True when inheriting from BackgroundObject,
like so:

class MyObject(BackgroundObject, daemon=True):
 ...

then the tasks spawned in the nursery will automatically be cancelled
when the async with MyObject(...) as obj: block exits.
Otherwise, the parent waits for the children to exit normally, like
the default Trio nursery behavior.

	
nursery

	The nursery that was created for this object. This attribute only
exists within the scope of the object’s async with block, so
it cannot be used from __init__, nor after the block has been
exited.

If made to use BackgroundObject, the websocket example above
from above would reduce to:

class WebsocketConnection(BackgroundObject, daemon=True):
 def __init__(self, **etc):
 # initialize other members from **etc

 async def __open__(self) -> None:
 await foo()
 self.nursery.start_soon(self._manage_connection)

async def use_websocket():
 async with WebsocketConnection(**etc) as conn:
 await conn.send("Hi!")

Tree variables

When you start a new Trio task, the initial values of its context variables [https://trio.readthedocs.io/en/stable/reference-core.html#task-local-storage]
(contextvars.ContextVar [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar]) are inherited from the environment of the
start_soon [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery.start_soon] or start [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery.start] call that
started the new task. For example, this code:

some_cvar = contextvars.ContextVar()

async def print_in_child(tag):
 print("In child", tag, "some_cvar has value", some_cvar.get())

some_cvar.set(1)
async with trio.open_nursery() as nursery:
 nursery.start_soon(print_in_child, 1)
 some_cvar.set(2)
 nursery.start_soon(print_in_child, 2)
 some_cvar.set(3)
 print("In parent some_cvar has value", some_cvar.get())

will produce output like:

In parent some_cvar has value 3
In child 1 some_cvar has value 1
In child 2 some_cvar has value 2

(If you run it yourself, you might find that the “child 2” line comes
before “child 1”, but it will still be the case that child 1 sees value 1
while child 2 sees value 2.)

You might wonder why this differs from the behavior of cancel scopes,
which only apply to a new task if they surround the new task’s entire
nursery (as explained in the Trio documentation about
child tasks and cancellation [https://trio.readthedocs.io/en/stable/reference-core.html#child-tasks-and-cancellation]). The difference is that a cancel
scope has a limited lifetime (it can’t cancel anything once you exit
its with block), while a context variable’s value is just a value
(request #42 can keep being request #42 for as long as it likes,
without any cooperation from the task that created it).

In specialized cases, you might want to provide a task-local value
that’s inherited only from the parent nursery, like cancel scopes are.
For example, maybe you’re trying to provide child tasks with access to
a limited-lifetime resource such as a nursery or network connection,
and you only want a task to be able to use the resource if it’s going
to remain available for the task’s entire lifetime. You can support
this use case using TreeVar, which is like contextvars.ContextVar [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar]
except for the way that it’s inherited by new tasks. (It’s a “tree”
variable because it’s inherited along the parent-child links that form
the Trio task tree.)

If the above example used TreeVar, then its output would be:

In parent some_cvar has value 3
In child 1 some_cvar has value 1
In child 2 some_cvar has value 1

because child 2 would inherit the value from its parent nursery, rather than
from the environment of the start_soon() call that creates it.

	
class tricycle.TreeVar(name[, *, default])

	A “tree variable”: like a context variable except that its value
in a new task is inherited from the new task’s parent nursery rather
than from the new task’s spawner.

TreeVar objects support all the same methods and attributes as
ContextVar [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar] objects
(get() [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar.get],
set() [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar.set],
reset() [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar.reset], and
name [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar.name]), and they are constructed the same
way. They also provide the additional methods being() and
get_in(), documented below.

Accessing or changing the value of a TreeVar outside of a Trio
task will raise RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]. (Exception: get_in() still
works outside of a task, as long as you have a reference to the
task or nursery of interest.)

Note

TreeVar values are not directly stored in the
contextvars.Context [https://docs.python.org/3/library/contextvars.html#contextvars.Context], so you can’t use Context.get() [https://docs.python.org/3/library/contextvars.html#contextvars.Context.get] to access them. If you need the value
in a context other than your own, use get_in().

	
with being(value: T) → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][None [https://docs.python.org/3/library/constants.html#None]]

	Returns a context manager which sets the value of this TreeVar to
value upon entry and restores its previous value upon exit.

	
get_in(task_or_nursery: Task [https://trio.readthedocs.io/en/stable/reference-lowlevel.html#trio.lowlevel.Task] | Nursery [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery]) → T

	
get_in(task_or_nursery: Task [https://trio.readthedocs.io/en/stable/reference-lowlevel.html#trio.lowlevel.Task] | Nursery [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery], default: U) → T | U

	Gets the value of this TreeVar in the given
Task [https://trio.readthedocs.io/en/stable/reference-lowlevel.html#trio.lowlevel.Task] or Nursery [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery].

The value in a task is the value that would be returned by a
call to get() [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar.get] in that task. The
value in a nursery is the value that would be returned by
get() [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar.get] at the beginning of a new
child task started in that nursery. The default argument has
the same semantics as it does for get() [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar.get].

Release history

tricycle 0.4.1 (2024-02-02)

	open_service_nursery() no longer assumes that TaskStatus.started()
will be called from inside the task that was just started. This restores
feature parity with regular Trio nurseries, which allow started() to be
called anywhere, and fixes
trio-asyncio issue #135 [https://github.com/python-trio/trio-asyncio/issues/135]. (#27 [https://github.com/oremanj/tricycle/issues/27])

	tricycle no longer advertises itself as “experimental”; it has been around
for more than 4 years at this point and is being used in production.

tricycle 0.4.0 (2024-01-11)

	tricycle now requires Python 3.8 and Trio 0.23.0 or greater.

	tricycle no longer depends on the trio-typing library, since Trio now
has upstream support for type hints.

tricycle 0.3.0 (2023-06-05)

	Added tricycle.TreeVar, which acts like a context variable that is
inherited at nursery creation time (and then by child tasks of that
nursery) rather than at task creation time. Tree variables are useful for providing safe ‘ambient’ access to a
resource that is tied to an async with block in the parent task,
such as an open file or trio-asyncio event loop. (#18 [https://github.com/oremanj/tricycle/issues/18])

tricycle 0.2.2 (2023-03-01)

	tricycle now explicitly re-exports all names, improving PEP-561 compliance and
allowing type checkers that enforce export strictness (including mypy with
--no-implicit-reexport) to check code using tricycle.
#14 [https://github.com/oremanj/tricycle/issues/14]

tricycle 0.2.1 (2020-09-30)

	Update to support Trio 0.15.0 and later: rename trio.hazmat references
to the new trio.lowlevel.

tricycle 0.2.0 (2019-12-12)

	Add MultiCancelScope, open_service_nursery, ScopedObject, BackgroundObject.

tricycle 0.1.0 (2019-05-06)

	Initial release.

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 tricycle	

Index

 A
 | B
 | C
 | E
 | G
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 | U
 | W

A

 	
 	aclose() (tricycle.BufferedReceiveStream method)

 	(tricycle.TextReceiveStream method)

 	acquire() (tricycle.RWLock method)

 	acquire_nowait() (tricycle.RWLock method)

 	
 	acquire_read() (tricycle.RWLock method)

 	acquire_read_nowait() (tricycle.RWLock method)

 	acquire_write() (tricycle.RWLock method)

 	acquire_write_nowait() (tricycle.RWLock method)

B

 	
 	BackgroundObject (class in tricycle)

 	
 	being() (tricycle.TreeVar method)

 	BufferedReceiveStream (class in tricycle)

C

 	
 	cancel() (tricycle.MultiCancelScope method)

 	
 	cancel_called (tricycle.MultiCancelScope attribute)

 	chunk_size (tricycle.TextReceiveStream attribute)

E

 	
 	encoding (tricycle.TextReceiveStream attribute)

 	
 	errors (tricycle.TextReceiveStream attribute)

G

 	
 	get_in() (tricycle.TreeVar method)

L

 	
 	locked() (tricycle.RWLock method)

M

 	
 	
 module

 	tricycle

 	
 	MultiCancelScope (class in tricycle)

N

 	
 	newlines (tricycle.TextReceiveStream property)

 	
 	nursery (tricycle.BackgroundObject attribute)

O

 	
 	open_child() (tricycle.MultiCancelScope method)

 	
 	open_service_nursery() (in module tricycle)

R

 	
 	read_biased (tricycle.RWLock attribute)

 	read_locked() (tricycle.RWLock method)

 	receive() (tricycle.BufferedReceiveStream method)

 	receive_all_or_none() (tricycle.BufferedReceiveStream method)

 	
 	receive_exactly() (tricycle.BufferedReceiveStream method)

 	receive_line() (tricycle.TextReceiveStream method)

 	release() (tricycle.RWLock method)

 	RWLock (class in tricycle)

S

 	
 	ScopedObject (class in tricycle)

 	
 	shield (tricycle.MultiCancelScope attribute)

 	statistics() (tricycle.RWLock method)

T

 	
 	TextReceiveStream (class in tricycle)

 	transport_stream (tricycle.TextReceiveStream attribute)

 	
 	TreeVar (class in tricycle)

 	
 tricycle

 	module

U

 	
 	unget() (tricycle.BufferedReceiveStream method)

W

 	
 	write_locked() (tricycle.RWLock method)

 nav.xhtml

 Table of Contents

 		
 tricycle: Miscellaneous extensions for Trio, the friendly async I/O library

 		
 API reference

 		
 Synchronization primitives

 		
 RWLock

 		
 Stream helpers

 		
 BufferedReceiveStream

 		
 TextReceiveStream

 		
 Cancellation helpers

 		
 open_service_nursery()

 		
 MultiCancelScope

 		
 Scoped objects

 		
 ScopedObject

 		
 BackgroundObject

 		
 Tree variables

 		
 TreeVar

 		
 Release history

 		
 tricycle 0.4.1 (2024-02-02)

 		
 tricycle 0.4.0 (2024-01-11)

 		
 tricycle 0.3.0 (2023-06-05)

 		
 tricycle 0.2.2 (2023-03-01)

 		
 tricycle 0.2.1 (2020-09-30)

 		
 tricycle 0.2.0 (2019-12-12)

 		
 tricycle 0.1.0 (2019-05-06)

_static/file.png

_static/minus.png

_static/plus.png

